Group

Senior Scientist

Michael Maas

Michael Maas, PD Dr. rer. nat.


Am Biologischen Garten 2
IW3, Room 2140
28359 Bremen
Tel. 0421 218 64939

michael.maas@uni-bremen.de

Publons/ResearcherID: N-8544-2015
ORCID: 0000-0002-2352-4822
Scopus Author ID: 56948189800
Google Scholar

Research Interests

  • Colloidal assembly of multifunctional nanostructures
  • Organic/inorganic Hybrid-Materials
  • 3d Printing
  • Nanofibers
  • Thin Films
  • Microcapsules
  • Bio-Nano and Bio-Material Interactions

Education

6/2018 Habilitation at University of Bremen
12/2005 - 02/2009 Ph.D. studies in Physical Chemistry
10/2003 – 11/2005 Diploma studies in chemistry with an emphasis on life sciences at TU Dortmund.
10/2001 – 09/2003 Undergraduate studies in chemistry at TU Dortmund.
07/1991 – 06/2000 Gymnasium Altlünen

Positions and Work Experience

05/2011 -  present Senior Scientist in the Advanced Ceramics Group, University of Bremen
03/2009 - 03/2011 Research stipend granted by the DFG on the “Self-assembly of nanoparticle thin films at the liquid-liquid interface“.
Postdoctoral fellow in the lab of Prof. G. G. Fuller, in cooperation with Prof. R. N. Zare, Chemistry Department, Stanford University.
12/2005 - 02/2009 Ph.D. studies in the lab of Prof. Dr. H. Rehage, chair of Physical Chemistry II, TU Dortmund. Dissertation in 12.2008 on “The Biomimetic Formation of Thin Films below Lipid Monolayers” 
05 - 11/2005 Diploma thesis on “Basics of Biomineralization: Formation and Characterization of Thin Calcium Carbonate Films” in the lab of Prof. Dr. H. Rehage, chair of Physical Chemistry II, TU Dortmund.

Teaching


Keramische Nanotechnologie

Bioceramics

Publications

  1. Plasmonic porous ceramics based on zirconia-toughened alumina functionalized with silver nanoparticles for surface-enhanced Raman scattering
    Open Ceramics
    Guo, T., Karim, Md N., Ghosh, K., Murshed, M. M., Rezwan, K., Maas, M.
    2022  9 ( .. ): p. 100228 .  https://doi.org/10.1016/j.oceram.2022.100228
  2. 3D bioprinting of hydrogel/ceramic composites with hierarchical porosity
    Journal of Materials Science
    Condi Mainardi, J., Bonini Demarchi, C., Mirdrikvand, M., Karim, Md N., Dreher, W., Rezwan, K., Maas, M.
    2022  57 ( 4 ): p. 1-16 .  https://doi.org/10.1007/s10853-021-06829-7
  3. Assessment of nanoparticle immersion depth at liquid interfaces from chemically equivalent macroscopic surfaces,
    Journal of Colloid and Interface Science
    Smits,J., Giri R. P. Shen, C., Mendonça, D., Murphy, B. Huber, P., Rezwan, K., Maas, M.
    2022  611 ( .. ): p. 670-683 .  https://doi.org/10.1016/j.jcis.2021.12.113
  4. Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting
    Bioprocess and Biosystems Engineering
    Condi Mainardi, J., Rezwan, K., Maas, M.
    2021  44( 11 ): p. 1-15 . http://link.springer.com/article/10.1007/s00449-021-02650-3
  5. Statistical Analysis of Thermal Conductivity Experimentally Measured in Water-Based Nanofluids
    Proceedings of the Royal Society A
    Tielke, J., Maas, M., Castillo, M., Rezwan, K., Avila, M.
    2021  477( 2250 ): p. 1471-2946. https://doi.org/10.1098/rspa.2021.0222
  6. Arsenic and sulfur nanoparticle synthesis mimicking environmental conditions of submarine shallow-water hydrothermal vents
    Journal of Environmental Sciences
    Durán-Toro, V. M. Rezwan, K. Bühring, S. I. Maas, M.
    2022  111(): p. 301-312. https://doi.org/10.1016/j.jes.2021.04.011
  7. Synergistic and Competitive Adsorption of Hydrophilic Nanoparticles and Oil-Soluble Surfactants at the Oil-Water Interface
    Langmuir
    Smits, J. Giri, R. P. Chen, S. Mendonca, D. Murphy, B. Huber, P. Rezwan, K. Maas, M.
    2021  37(18): p. 14. https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.1c00559
  8. Edible high internal phase Pickering emulsion with double-emulsion morphology
    Food Hydrocolloids
    Jiang, H., Zhang, T., , Smits, J., Maas, M., Huang, X., Yin, S. Ngai, T.
    2021 111(): p.106405.  https://doi.org/10.1016/j.foodhyd.2020.106405
  9. Janus nanoparticles designed for extended cell surface attachment
    ACS Applied Bio Materials
    Kadam, R., Ghawali, J. , Waespy, M. Maas, M., Rezwan, K.
    2020 12(36): p."18938-18949. https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04061d
  10. Wet-spinning of magneto-responsive helical chitosan microfibers
    Beilstein Journal of Nanotechnology
    Brüggemann, D. Michel, J. Suter, N. de Aguiar, M.G. Maas, M.
    2020 11(1): p.991-999.  https://www.beilstein-journals.org/s/c9Hc9VVc5B
  11. Tailoring electrostatic surface potential and adsorption capacity of porous ceramics by silica-assisted sintering
    Materialia
    Antink, Marieke, M H. ,Beutel, S. ,Rezwan, K., Maas, M.,
    2020 12(1): p.100735.  http://www.sciencedirect.com/science/article/pii/S2589152920301526
  12. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid–Liquid Interfaces
    Langmuir
    Smits, J.Vieira, F.Bisswurn, B., Rezwan, K., Maas, M.,
    2019 35(34): p.11089-11098. https://doi.org/10.1021/acs.langmuir.9b01568
  13. Selective, Agglomerate-Free Separation of Bacteria Using Biofunctionalized, Magnetic Janus Nanoparticles
    ACS Applied Bio Materials
    Kadam, R.Maas, M., Rezwan, K.,
    2019 2(8): p.3520–31. https://doi.org/10.1021/acsabm.9b00415
  14. Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications
    Bioprocess and Biosystems Engineering
    Condi Mainardi, J.Rezwan, K., Maas, M.,
    2019 Array(): p.1-10. https://doi.org/10.1007/s00449-019-02119-4
  15. Proteolytic ceramic capillary membranes for the production of peptides under flow
    Biochemical Engineering Journal
    Hoog Antink, M., Sewczyk, T.Kroll, S.Árki, P. ,Beutel, S.Rezwan, K., Maas, M.,
    2019 147(): p.89-99. http://www.sciencedirect.com/science/article/pii/S1369703X19301238
  16. Mineralization of Iron Oxide by Ferritin Homopolymers Immobilized on SiO2 Nanoparticles
    Bioinspired, Biomimetic and Nanobiomaterials
    Carmona, D., Treccani, L.Michaelis, M., Lid, S.Debus, C.Ciacchi, L.Rezwan, K., Maas, M.,
    2018 8(1): p.16-27. https://www.icevirtuallibrary.com/doi/abs/10.1680/jbibn.18.00038
  17. Nanoscale Janus Particles with Dual Protein Functionalization
    Particle & Particle Systems Characterization
    Kadam, R.Zilli, M., Maas, M., Rezwan, K.,
    2018 35(3): p.. http://dx.doi.org/10.1002/ppsc.201700332
  18. Hydrophobic ceramic capillary membranes for versatile virus filtration
    Journal of Membrane Science
    Bartels, J.Batista, A.Kroll, S.Maas, M., Rezwan, K.,
    2019 570-571(): p.85-92. http://www.sciencedirect.com/science/article/pii/S0376738818312742
  19. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters
    Physical Chemistry Chemical Physics
    Bartels, J.Hildebrand, N. ,Nawrocki, M., Kroll, S.Maas, M., Colombi Ciacchi, L.Rezwan, K.,
    2018 20(16): p.11215-11223. http://dx.doi.org/10.1039/C8CP01607K
  20. Flow rate dependent continuous hydrolysis of protein isolates
    AMB Express
    Sewczyk, T.Hoog Antink, M., Maas, M., Kroll, S.Beutel, S.
    2018 8(1): p.18. https://doi.org/10.1186/s13568-018-0548-9
  21. Electrostatic assembly of zwitterionic and amphiphilic supraparticles
    Journal of Colloid and Interface Science
    Maas, M., Silvério, C.Laube, J.Rezwan, K.,
    2017 501(): p.256-266. http://www.sciencedirect.com/science/article/pii/S0021979717304940
  22. An evaluation of colloidal and crystalline properties of CaCO3 nanoparticles for biological applications
    Materials Science and Engineering: C
    Lauth, V.Maas, M., Rezwan, K.,
    2017 78(): p.305-314. http://www.sciencedirect.com/science/article/pii/S0928493117304691
  23. Colloidal capsules: Nano- and microcapsules with colloidal particle shells
    Chemical Society Reviews
    Bollhorst, T., Maas*, M., Rezwan, K.,
    2017 (): p.. http://dx.doi.org/10.1039/C6CS00632A
  24. Chitosan supraparticles with fluorescent silica nanoparticle shells and nanodiamond-loaded cores
    Journal of Materials Chemistry B
    Bollhorst, T., Maas*, M., Rezwan, K.,
    2017 5(): p.1664-1672. http://dx.doi.org/10.1039/C6TB03069F
  25. Self-assembly and shape control of hybrid nanocarriers based on calcium carbonate and carbon nanodots
    Chemistry of Materials
    Lauth, V., Loretz, B., Lehr, C-M., Maas*, M., Rezwan, K.,
    2016 28(): p.3796-3803. http://dx.doi.org/10.1021/acs.chemmater.6b00769
  26. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum
    ACS Applied Materials & Interfaces
    Shahabi, S., Döscher, S., Bollhorst, T., Treccani, L., Maas, M., Dringen, R., Rezwan, K.,
    2015 (): p.. http://dx.doi.org/10.1021/acsami.5b09483
  27. Coacervate-directed synthesis of CaCO3 microcarriers for pH-responsive delivery of biomolecules
    Journal of Materials Chemistry B
    Lauth, V., Maas, M., Rezwan, K.,
    2014 2(): p.7725-7731. http://dx.doi.org/10.1039/C4TB01213E
  28. The Contribution of Rheology for Designing Hydroxyapatite Biomaterials
    Current Opinion in Colloid and Interface Science
    Maas, M., Heß, U., Rezwan, K.,
    2014 19(6): p.585-593. http://dx.doi.org/10.1016/j.cocis.2014.09.002
  29. Bactericidal activity of partially oxidized nanodiamonds
    ACS Nano
    Wehling, J., Dringen, R., Zare, R. N., Maas, M., Rezwan, K.,
    2014 8(6): p.6475-6483. http://dx.doi.org/10.1021/nn502230m
  30. Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles
    Angewandte Chemie International Edition
    Bollhorst, T., Shahabi, S., Wörz, K., Petters, C., Dringen, R., Maas*, M., Rezwan, K.,
    2015 54(1): p.118-123. http://dx.doi.org/10.1002/anie.201408515
  31. Micromolding of calcium carbonate using a bio-inspired, coacervation-mediated process
    Journal of the American Ceramic Society
    Kaempfe, P., Lauth, V. R., Halfer, T., Treccani, L., Maas, M., Rezwan, K.,
    2013 96(3): p.736-742. http://dx.doi.org/10.1111/jace.12194
  32. Diamondosomes: Submicron Colloidosomes with Nanodiamond Shells
    Particle & Particle Systems Characterization
    Maas, M., Bollhorst, T., Zare, R. N., Rezwan, K.,
    2014 31(10): p.1067-1071. http://dx.doi.org/10.1002/ppsc.201400022
  33. Synthesis Route for the Self-Assembly of Submicron-sized Colloidosomes with Tailorable Nanopores
    Chemistry of Materials
    Bollhorst, T., Grieb, T., Rosenauer, A., Fuller, G., Maas, M., Rezwan, K.,
    2013 25(17): p.3464-3471. http://dx.doi.org/10.1021/cm401610a
  34. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: Bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives
    Journal of Colloid and Interface Science
    Maas, M., Bodnar, P.M., Hess; U., Treccani; L., Rezwan, K.,
    2013 407(): p.529-535. http://dx.doi.org/10.1016/j.jcis.2013.06.039
  35. A critical study: assessment of the effect of silica particles from 15 to 500 nm on bacterial viability
    Environmental pollution
    Wehling, J., Volkmann, E.,Grieb, T.,Rosenauer, A.,Maas, M., Treccani, L.,Rezwan, K.,
    2013  176(): p.292-299. http://dx.doi.org/10.1016/j.envpol.2013.02.001
  36. In situ observation of maghemite nanoparticle adsorption at the water/gas interface
    The European Physical Journal - Special Topics
    Paulus, M.,Degen, P.,Schmacke, S.,Maas, M.,Kahner, R.,Struth, B.,Tolan, M.,Rehage, H.
    2009 167(1): p.133-136. http://dx.doi.org/10.1140/epjst/e2009-00948-1
  37. Preparation of Mineralized Nanofibers: Collagen Fibrils Containing Calcium Phosphate
    Nano Letters
    Maas, M.,Guo, P.,Keeney, M.,Yang, F.,Hsu, T. M.,Fuller, G. G.,Martin, C. R.,Zare, R. N. ,
    2011 11(3): p.1383-1388. http://dx.doi.org/10.1021/nl200116d
  38. In Situ Observation of γ-Fe2O3 Nanoparticle Adsorption under Different Monolayers at the Air/Water Interface
    Langmuir
    Degen, P.,Paulus, M.,Maas, M.,Kahner, R.,Schmacke, S.,Struth, B.,Tolan, M.,Rehage, H.
    2008 24(22): p.12958-12962. http://dx.doi.org/10.1021/la802394a
  39. Thin Film Formation of Silica Nanoparticle/Lipid Composite Films at the Fluid−Fluid Interface
    Langmuir
    Maas, M.,Ooi, C. C.,Fuller, G. G.
    2010 26(23): p.17867-17873. http://dx.doi.org/10.1021/la103492a
  40. On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid
    Colloid Polym Sci
    Maas, M.,Rehage, H.,Nebel, H.,Epple, M.,
    2007 285(12): p.1301-1311. http://dx.doi.org/10.1007/s00396-007-1708-7
  41. A Detailed Study of Closed Calcium Carbonate Films at the Liquid−Liquid Interface
    Langmuir
    Maas, M.,Rehage, H.,Nebel, H.,Epple, M.,
    2009 25(4): p.2258-2263. http://dx.doi.org/10.1021/la803446q
  42. Biomimetic formation of thin, coherent iron oxide films under Langmuir monolayers
    Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Maas, M.,Degen, P.,Rehage, H.,Nebel, H.,Epple, M.,
    2010 354(1-3): p.149-155. http://dx.doi.org/10.1016/j.colsurfa.2009.04.049
  43. Formation and Structure of Coherent, Ultra-thin Calcium Carbonate Films below Monolayers of Stearic Acid at the Oil/Water Interface
    Progr. Colloid Polym. Sci.
    Maas, M.,Rehage, H.,Nebel, H.,Epple, M.,
    2008 134(): p.11-18. http://dx.doi.org/10.1007/2882_2008_077