Group

Senior Scientist

Michael Maas

Michael Maas, PD Dr. rer. nat.

Am Biologischen Garten 2
IW3, Room 2140
28359 Bremen
Tel. 0421 218 64939

michael.maas@uni-bremen.de

Publons/ResearcherID: N-8544-2015
ORCID: 0000-0002-2352-4822
Scopus Author ID: 56948189800
Google Scholar

Research Interests

  • Colloidal assembly of multifunctional nanostructures
  • Organic/inorganic Hybrid-Materials
  • 3d Printing
  • Nanofibers
  • Thin Films
  • Microcapsules
  • Bio-Nano and Bio-Material Interactions

Education

6/2018 Habilitation at University of Bremen
12/2005 - 02/2009 Ph.D. studies in Physical Chemistry
10/2003 – 11/2005 Diploma studies in chemistry with an emphasis on life sciences at TU Dortmund.
10/2001 – 09/2003 Undergraduate studies in chemistry at TU Dortmund.
07/1991 – 06/2000 Gymnasium Altlünen

Positions and Work Experience

05/2011 - present Senior Scientist in the Advanced Ceramics Group, University of Bremen
03/2009 - 03/2011 Research stipend granted by the DFG on the “Self-assembly of nanoparticle thin films at the liquid-liquid interface“.
Postdoctoral fellow in the lab of Prof. G. G. Fuller, in cooperation with Prof. R. N. Zare, Chemistry Department, Stanford University.
12/2005 - 02/2009 Ph.D. studies in the lab of Prof. Dr. H. Rehage, chair of Physical Chemistry II, TU Dortmund. Dissertation in 12.2008 on “The Biomimetic Formation of Thin Films below Lipid Monolayers”
05 - 11/2005 Diploma thesis on “Basics of Biomineralization: Formation and Characterization of Thin Calcium Carbonate Films” in the lab of Prof. Dr. H. Rehage, chair of Physical Chemistry II, TU Dortmund.

Teaching

Keramische Nanotechnologie

Bioceramics

Publications

  1. Alumina Ceramic Textiles as Novel Bacteria-Capturing Wound Dressings.
    Dutta, D., Almeida, R.S.M., Karim, Md.N., Brüggemann, D., Rezwan, K., Maas, M.,
    Advanced Materials Interfaces, 2024
    Volume: n/a, Nr. (n/a), p. 2400232
    https://doi.org/10.1002/admi.202400232

  2. Gold Nanoparticle-Coated Bioceramics for Plasmonically Enhanced Molecule Detection via Surface-Enhanced Raman Scattering.
    Guo, T., Schmidt, J., Murshed, M.M., Rezwan, K., Maas, M.,
    Advanced Engineering Materials, 2023
    Volume: n/a, Nr. (n/a), p. 2300942
    https://doi.org/10.1002/adem.202300942

  3. Selective Nitridation of Ceramic Open Cell Foams for Efficient Photothermal Heating.
    Oyedepo, O.G., Rezwan, K., Maas, M.,
    Advanced Materials Technologies, 2023
    Volume: n/a, Nr. (n/a), p. 2301224
    https://doi.org/10.1002/admt.202301224

  4. Ceramic Open Cell Foams Featuring Plasmonic Hybrid Metal Nanoparticles for In Situ SERS Monitoring of Catalytic Reactions.
    Guo, T., Murshed, M. M., Rezwan, K., Maas, M.,
    Advanced Materials Interfaces, 2023
    Volume:  10 , Nr. (16 ), p. 2300207
    https://doi.org/10.1002/admi.202300207

  5. Plasmonic porous ceramics based on zirconia-toughened alumina functionalized with silver nanoparticles for surface-enhanced Raman scattering
    Guo, T., Karim, Md N., Ghosh, K., Murshed, M. M., Rezwan, K., Maas, M.,
    Open Ceramics , 2022
    Volume:  9 , Nr. ( .. ), p. 100228
    https://doi.org/10.1016/j.oceram.2022.100228

  6. 3D bioprinting of hydrogel/ceramic composites with hierarchical porosity
    Condi Mainardi, J., Bonini Demarchi, C., Mirdrikvand, M., Karim, Md N., Dreher, W., Rezwan, K., Maas, M.,
    Journal of Materials Science , 2022
    Volume:  57 , Nr. ( 4 ), p. 1-16
    https://doi.org/10.1007/s10853-021-06829-7

  7. Assessment of nanoparticle immersion depth at liquid interfaces from chemically equivalent macroscopic surfaces,
    Smits,J., Giri R. P., Shen, C., Mendonça, D., Murphy, B., Huber, P., Rezwan, K., Maas, M.,
    Journal of Colloid and Interface Science , 2022
    Volume:  611 , Nr. ( .. ), p. 670-683
    https://doi.org/10.1016/j.jcis.2021.12.113

  8. Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting
    Condi Mainardi, J., Rezwan, K., Maas, M.,
    Bioprocess and Biosystems Engineering, 2021
    Volume:  44, Nr. ( 11 ), p. 1-15
    http://link.springer.com/article/10.1007/s00449-021-02650-3

  9. Statistical Analysis of Thermal Conductivity Experimentally Measured in Water-Based Nanofluids
    Tielke, J., Maas, M., Castillo, M., Rezwan, K., Avila, M.,
    Proceedings of the Royal Society A , 2021
    Volume:  477, Nr. ( 2250 ), p. 1471-2946
    https://doi.org/10.1098/rspa.2021.0222

  10. Arsenic and sulfur nanoparticle synthesis mimicking environmental conditions of submarine shallow-water hydrothermal vents
    Durán-Toro, V. M., Rezwan, K., Bühring, S. I., Maas, M.,
    Journal of Environmental Sciences , 2022
    Volume:  111, Nr. (), p. 301-312
    https://doi.org/10.1016/j.jes.2021.04.011

  11. Synergistic and Competitive Adsorption of Hydrophilic Nanoparticles and Oil-Soluble Surfactants at the Oil-Water Interface
    Smits, J., Giri, R. P., Chen, S., Mendonca, D., Murphy, B., Huber, P., Rezwan, K., Maas, M.,
    Langmuir, 2021
    Volume:  37, Nr. (18), p. 14
    https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.1c00559

  12. Edible high internal phase Pickering emulsion with double-emulsion morphology
    Jiang, H., Zhang, T., Smits, J., Maas, M., Huang, X., Yin, S., Ngai, T.,
    Food Hydrocolloids , 2021
    Volume: 111, Nr. (), p.106405
    https://doi.org/10.1016/j.foodhyd.2020.106405

  13. Janus nanoparticles designed for extended cell surface attachment
    Kadam, R., Ghawali, J., Waespy, M., Maas, M., Rezwan, K.,
    ACS Applied Bio Materials , 2020
    Volume: 12, Nr. (36), p.18938-18949
    https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04061d

  14. Wet-spinning of magneto-responsive helical chitosan microfibers
    Brüggemann, D., Michel, J., Suter, N., de Aguiar, M.G., Maas, M.,
    Beilstein Journal of Nanotechnology , 2020
    Volume: 11, Nr. (1), p.991-999
    https://www.beilstein-journals.org/s/c9Hc9VVc5B

  15. Tailoring electrostatic surface potential and adsorption capacity of porous ceramics by silica-assisted sintering
    Antink, Marieke, M H., Beutel, S., Rezwan, K., Maas, M.,
    Materialia, 2020
    Volume: 12, Nr. (1), p.100735
    http://www.sciencedirect.com/science/article/pii/S2589152920301526

  16. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid–Liquid Interfaces
    Smits, J., Vieira, F., Bisswurn, B., Rezwan, K., Maas, M.,
    Langmuir, 2019
    Volume: 35, Nr. (34), p.11089-11098
    https://doi.org/10.1021/acs.langmuir.9b01568

  17. Selective, Agglomerate-Free Separation of Bacteria Using Biofunctionalized, Magnetic Janus Nanoparticles
    Kadam, R., Maas, M., Rezwan, K.,
    ACS Applied Bio Materials, 2019
    Volume: 2, Nr. (8), p.3520–31
    https://doi.org/10.1021/acsabm.9b00415

  18. Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications
    Condi Mainardi, J., Rezwan, K., Maas, M.,
    Bioprocess and Biosystems Engineering, 2019
    Volume: , Nr. (), p.1-10
    https://doi.org/10.1007/s00449-019-02119-4

  19. Proteolytic ceramic capillary membranes for the production of peptides under flow
    Hoog Antink, M., Sewczyk, T., Kroll, S., Árki, P., Beutel, S., Rezwan, K., Maas, M.,
    Biochemical Engineering Journal, 2019
    Volume: 147, Nr. (), p.89-99
    http://www.sciencedirect.com/science/article/pii/S1369703X19301238

  20. Mineralization of Iron Oxide by Ferritin Homopolymers Immobilized on SiO2 Nanoparticles
    Carmona, D., Treccani, L., Michaelis, M., Lid, S., Debus, C., Ciacchi, L., Rezwan, K., Maas, M.,
    Bioinspired, Biomimetic and Nanobiomaterials, 2018
    Volume: 8, Nr. (1), p.16-27
    https://www.icevirtuallibrary.com/doi/abs/10.1680/jbibn.18.00038

  21. Nanoscale Janus Particles with Dual Protein Functionalization
    Kadam, R., Zilli, M., Maas, M., Rezwan, K.,
    Particle & Particle Systems Characterization, 2018
    Volume: 35, Nr. (3), p.
    http://dx.doi.org/10.1002/ppsc.201700332

  22. Hydrophobic ceramic capillary membranes for versatile virus filtration
    Bartels, J., Batista, A., Kroll, S., Maas, M., Rezwan, K.,
    Journal of Membrane Science, 2019
    Volume: 570-571, Nr. (), p.85-92
    http://www.sciencedirect.com/science/article/pii/S0376738818312742

  23. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters
    Bartels, J., Hildebrand, N., Nawrocki, M., Kroll, S., Maas, M., Colombi Ciacchi, L., Rezwan, K.,
    Physical Chemistry Chemical Physics, 2018
    Volume: 20, Nr. (16), p.11215-11223
    http://dx.doi.org/10.1039/C8CP01607K

  24. Flow rate dependent continuous hydrolysis of protein isolates
    Sewczyk, T., Hoog Antink, M., Maas, M., Kroll, S., Beutel, S.,
    AMB Express, 2018
    Volume: 8, Nr. (1), p.18
    https://doi.org/10.1186/s13568-018-0548-9

  25. Electrostatic assembly of zwitterionic and amphiphilic supraparticles
    Maas, M., Silvério, C., Laube, J., Rezwan, K.,
    Journal of Colloid and Interface Science, 2017
    Volume: 501, Nr. (), p.256-266
    http://www.sciencedirect.com/science/article/pii/S0021979717304940

  26. An evaluation of colloidal and crystalline properties of CaCO3 nanoparticles for biological applications
    Lauth, V., Maas, M., Rezwan, K.,
    Materials Science and Engineering: C, 2017
    Volume: 78, Nr. (), p.305-314
    http://www.sciencedirect.com/science/article/pii/S0928493117304691

  27. Colloidal capsules: Nano- and microcapsules with colloidal particle shells
    Bollhorst, T., Maas*, M., Rezwan, K.,
    Chemical Society Reviews, 2017
    Volume: , Nr. (), p.
    http://dx.doi.org/10.1039/C6CS00632A

  28. Chitosan supraparticles with fluorescent silica nanoparticle shells and nanodiamond-loaded cores
    Bollhorst, T., Maas*, M., Rezwan, K.,
    Journal of Materials Chemistry B, 2017
    Volume: 5, Nr. (), p.1664-1672
    http://dx.doi.org/10.1039/C6TB03069F

  29. Carbon nanomaterials as antibacterial colloids

    Materials, 2016
    Volume: 9, Nr. (8), p.617
    http://dx.doi.org/10.3390/ma9080617

  30. Self-assembly and shape control of hybrid nanocarriers based on calcium carbonate and carbon nanodots
    Lauth, V., Loretz, B., Lehr, C-M., Maas*, M., Rezwan, K.,
    Chemistry of Materials, 2016
    Volume: 28, Nr. (), p.3796-3803
    http://dx.doi.org/10.1021/acs.chemmater.6b00769

  31. Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum
    Shahabi, S., Döscher, S., Bollhorst, T., Treccani, L., Maas, M., Dringen, R., Rezwan, K.,
    ACS Applied Materials & Interfaces, 2015
    Volume: , Nr. (), p.
    http://dx.doi.org/10.1021/acsami.5b09483

  32. Coacervate-directed synthesis of CaCO3 microcarriers for pH-responsive delivery of biomolecules
    Lauth, V., Maas, M., Rezwan, K.,
    Journal of Materials Chemistry B, 2014
    Volume: 2, Nr. (), p.7725-7731
    http://dx.doi.org/10.1039/C4TB01213E

  33. The Contribution of Rheology for Designing Hydroxyapatite Biomaterials
    Maas, M., Heß, U., Rezwan, K.,
    Current Opinion in Colloid and Interface Science, 2014
    Volume: 19, Nr. (6), p.585-593
    http://dx.doi.org/10.1016/j.cocis.2014.09.002

  34. Bactericidal activity of partially oxidized nanodiamonds
    Wehling, J., Dringen, R., Zare, R. N., Maas, M., Rezwan, K.,
    ACS Nano, 2014
    Volume: 8, Nr. (6), p.6475-6483
    http://dx.doi.org/10.1021/nn502230m

  35. Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles
    Bollhorst, T., Shahabi, S., Wörz, K., Petters, C., Dringen, R., Maas*, M., Rezwan, K.,
    Angewandte Chemie International Edition, 2015
    Volume: 54, Nr. (1), p.118-123
    http://dx.doi.org/10.1002/anie.201408515

  36. Micromolding of calcium carbonate using a bio-inspired, coacervation-mediated process
    Kaempfe, P., Lauth, V. R., Halfer, T., Treccani, L., Maas, M., Rezwan, K.,
    Journal of the American Ceramic Society, 2013
    Volume: 96, Nr. (3), p.736-742
    http://dx.doi.org/10.1111/jace.12194

  37. Diamondosomes: Submicron Colloidosomes with Nanodiamond Shells
    Maas, M., Bollhorst, T., Zare, R. N., Rezwan, K.,
    Particle & Particle Systems Characterization, 2014
    Volume: 31, Nr. (10), p.1067-1071
    http://dx.doi.org/10.1002/ppsc.201400022

  38. Synthesis Route for the Self-Assembly of Submicron-sized Colloidosomes with Tailorable Nanopores
    Bollhorst, T., Grieb, T., Rosenauer, A., Fuller, G., Maas, M., Rezwan, K.,
    Chemistry of Materials, 2013
    Volume: 25, Nr. (17), p.3464-3471
    http://dx.doi.org/10.1021/cm401610a

  39. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: Bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives
    Maas, M., Bodnar, P.M., Hess; U., Treccani; L., Rezwan, K.,
    Journal of Colloid and Interface Science, 2013
    Volume: 407, Nr. (), p.529-535
    http://dx.doi.org/10.1016/j.jcis.2013.06.039

  40. A critical study: assessment of the effect of silica particles from 15 to 500 nm on bacterial viability
    Wehling, J., Volkmann, E., Grieb, T., Rosenauer, A., Maas, M., Treccani, L., Rezwan, K.,
    Environmental pollution, 2013
    Volume: 176, Nr. (), p.292-299
    http://dx.doi.org/10.1016/j.envpol.2013.02.001

  41. In situ observation of maghemite nanoparticle adsorption at the water/gas interface
    Paulus, M., Degen, P., Schmacke, S., Maas, M., Kahner, R., Struth, B., Tolan, M., Rehage, H.,
    The European Physical Journal - Special Topics, 2009
    Volume: 167, Nr. (1), p.133-136
    http://dx.doi.org/10.1140/epjst/e2009-00948-1

  42. Preparation of Mineralized Nanofibers: Collagen Fibrils Containing Calcium Phosphate
    Maas, M., Guo, P., Keeney, M., Yang, F., Hsu, T. M., Fuller, G. G., Martin, C. R., Zare, R. N.,
    Nano Letters, 2011
    Volume: 11, Nr. (3), p.1383-1388
    http://dx.doi.org/10.1021/nl200116d

  43. In Situ Observation of γ-Fe2O3 Nanoparticle Adsorption under Different Monolayers at the Air/Water Interface
    Degen, P., Paulus, M., Maas, M., Kahner, R., Schmacke, S., Struth, B., Tolan, M., Rehage, H.,
    Langmuir, 2008
    Volume: 24, Nr. (22), p.12958-12962
    http://dx.doi.org/10.1021/la802394a

  44. Thin Film Formation of Silica Nanoparticle/Lipid Composite Films at the Fluid−Fluid Interface
    Maas, M., Ooi, C. C., Fuller, G. G.,
    Langmuir, 2010
    Volume: 26, Nr. (23), p.17867-17873
    http://dx.doi.org/10.1021/la103492a

  45. On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid
    Maas, M., Rehage, H., Nebel, H., Epple, M.,
    Colloid Polym Sci, 2007
    Volume: 285, Nr. (12), p.1301-1311
    http://dx.doi.org/10.1007/s00396-007-1708-7

  46. A Detailed Study of Closed Calcium Carbonate Films at the Liquid−Liquid Interface
    Maas, M., Rehage, H., Nebel, H., Epple, M.,
    Langmuir, 2009
    Volume: 25, Nr. (4), p.2258-2263
    http://dx.doi.org/10.1021/la803446q

  47. Biomimetic formation of thin, coherent iron oxide films under Langmuir monolayers
    Maas, M., Degen, P., Rehage, H., Nebel, H., Epple, M.,
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010
    Volume: 354, Nr. (1-3), p.149-155
    http://dx.doi.org/10.1016/j.colsurfa.2009.04.049

  48. Formation and Structure of Coherent, Ultra-thin Calcium Carbonate Films below Monolayers of Stearic Acid at the Oil/Water Interface
    Maas, M., Rehage, H., Nebel, H., Epple, M.,
    Progr. Colloid Polym. Sci., 2008
    Volume: 134, Nr. (), p.11-18
    http://dx.doi.org/10.1007/2882_2008_077